Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis: discovery of common human genetic variants governing transcription, autonomic activity, and blood pressure in vivo.
نویسندگان
چکیده
BACKGROUND Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis. Does common genetic variation at human TH alter autonomic activity and predispose to cardiovascular disease? We undertook systematic polymorphism discovery at the TH locus and then tested variants for contributions to sympathetic function and blood pressure. METHODS AND RESULTS We resequenced 80 ethnically diverse individuals across the TH locus. One hundred seventy-two twin pairs were evaluated for sympathetic traits, including catecholamine production, reflex control of the circulation, and environmental (cold) stress responses. To evaluate hypertension, we genotyped subjects selected from the most extreme diastolic blood pressure percentiles in the population. Human TH promoter haplotype/reporter plasmids were transfected into chromaffin cells. Forty-nine single-nucleotide polymorphisms were discovered, but coding region polymorphism did not account for common phenotypic variation. A block of linkage disequilibrium spanned 4 common variants in the proximal promoter. Catecholamine secretory traits were significantly heritable (h2), as were stress-induced blood pressure changes. In the TH promoter, significant associations were found for urinary catecholamine excretion and for blood pressure response to stress. TH promoter haplotype 2 (TGGG) showed pleiotropy, increasing both norepinephrine excretion and blood pressure during stress. Coalescent simulations suggest that TH haplotype 2 likely arose approximately 380,000 years ago. In hypertension, 2 independent case-control studies (1266 subjects with 53% women and 927 subjects with 24% women) replicated the effect of C-824T in the determination of blood pressure. CONCLUSIONS We conclude that human catecholamine secretory traits are heritable, displaying joint genetic determination (pleiotropy) with autonomic activity and finally with blood pressure in the population. Catecholamine secretion is influenced by genetic variation in the adrenergic pathway encoding catecholamine synthesis, especially at the classically rate-limiting step, TH. The results suggest novel pathophysiological links between a key adrenergic locus, catecholamine metabolism, and blood pressure and suggest new strategies to approach the mechanism, diagnosis, and treatment of systemic hypertension.
منابع مشابه
Adrenergic Genetic Mechanisms in Hypertension and Hypertensive Kidney Disease
Catecholamine secretory traits were significantly heritable, as were stress-induced blood pressure changes. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis. In the tyrosine hyroxylase promoter, significant associations were found for urinary catecholamine excretion and for blood pressure response to stress. TH promoter haplotype 2 (TGGG) showed pleiotropy, in...
متن کاملHuman tyrosine hydroxylase natural genetic variation: delineation of functional transcriptional control motifs disrupted in the proximal promoter.
BACKGROUND Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis. Common genetic variation at the human TH promoter predicts alterations in autonomic activity and blood pressure, but how such variation influences human traits and, specifically, whether such variation affects transcription are not yet known. METHODS AND RESULTS Pairwise linkage disequilibrium acro...
متن کاملFunctional allelic heterogeneity and pleiotropy of a repeat polymorphism in tyrosine hydroxylase: prediction of catecholamines and response to stress in twins.
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, has a common tetranucleotide repeat polymorphism, (TCAT)(n). We asked whether variation at (TCAT)(n) may influence the autonomic nervous system and its response to environmental stress. To understand the role of heredity in such traits, we turned to a human twin study design. Both biochemical and physiological autonom...
متن کاملDiscovery of common human genetic variants of GTP cyclohydrolase 1 (GCH1) governing nitric oxide, autonomic activity, and cardiovascular risk.
GTP cyclohydrolase 1 (GCH1) is rate limiting in the provision of the cofactor tetrahydrobiopterin for biosynthesis of catecholamines and NO. We asked whether common genetic variation at GCH1 alters transmitter synthesis and predisposes to disease. Here we undertook a systematic search for polymorphisms in GCH1, then tested variants' contributions to NO and catecholamine release as well as auton...
متن کاملGenetic Variations of Tyrosine Hydroxylase in the Pathogenesis of Hypertension
One of the major pathophysiological features of primary hypertension is an inappropriate activation of the sympathetic nervous system, which is mediated by excessive synthesis and secretion of catecholamine into the blood. Tyrosine hydroxylase (TH), a rate-limiting enzyme in the synthesis of catecholamine, has been highlighted because genetic variations of TH could alter the activity of the sym...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 116 9 شماره
صفحات -
تاریخ انتشار 2007